Status of SC RF Accelerators - World-Wide SRF Experience

H. Padamsee
Cornell

Steady Growth Worldwide of Accelerator Applications of SC RF 1970 - 2004

- High Energy Particle Physics
- Nuclear Physics
- Light Sources
- High Intensity Proton (Neutron) Sources

"Livingston Plot for RF Superconductivity"

Total Installation > 1000 m Provided > 5 GV

Accelerator Installations at the HEP and NP Frontiers

SOUTH LINAC CRYOMODULES

NUCLEAR SCIENCE WITH SUPERCONDUCTING HEAVY-ION ACCELERATORS

Two Largest Applications

CEBAF and LEP-II (1995 - 2000)

380 cavites, 190 m, 42 cryomodules

Originally designed for 4 GeV, CEBAF achieved a beam energy of 6.5 GeV in five recirculating passes with a CW beam current of 200 μ A. Over a period of a few years, CEBAF upgraded their inline accelerating gradient from the design value of 5 MV/m to more than 7 MV/m.

LEP-II, 288 Nb-Cu cavities, 72 modules, 490 m

Operating Gradients

Get more performance from installed cavities - CEBAF

Get more performance from installed cavities - LEP-II

LEP- 2000

Total RF Accelerating Field in 2000

CEBAF Has Accumulated More than 2000 Cavity-Years of Automated Operation.

CEBAF demonstrated robustness of SRF technology with the complete recovery from the effects of Hurricane Isabel - See CERN Courier Feb 2004

Started out as a Category 5 hurricane

Caused 3.5 day region wide power outage. --> Warm up.

Physics program re-started within 6 weeks

< One percent of cavities could not be powered up due to poorer vacuum

All these cavities are inside a single cryomodule

LEP2: Always pushing the gradient up

RF trip rate and total MV during 1999

LEP2

Limitations:

1 trip = loss of one klystron= -100 MV

Influence of beam current on operational stablity:

pb⁻¹ LRP2 Integrated Luminosity: 1993 - 2000

Future SRF Activities at CERN

- SRF is Ready for LHC
- + Multi-mission High Intenisty Proton linac (later)

16 Nb-Cu Cavities4 Cryomodules16 MV per beam180 kW per cavity

SRF For High Luminosity, High Current Storage Rings

- CESR & KEK-B
- 500 MHz, 7 8 MV/m
- Beam currents " 1 amp
- Beam power 250 380 kW/cavity CW

CESR, KEK-B 500 MHz, 7 - 8 MV/m, > 1998

Between 1998- 2003 the availability of CESR was 84 - 95% of scheduled operating time

Between 2000 -2003 the availability of KEK-B was 88 -94% of scheduled operating time

8 systems

SRF for Light Sources

Storage Ring Light Sources

Cornell has transferred CESR SRF technology to ACCEL which is providing turnkey, tested systems for major storage ring light sources around the world with guaranteed performance. Total 9 systems

KEK/Mitsubishi will deliver 2 turnkey systems to BEPC in China

Saclay-CERN

A 2.75 GeV, 500 mA Light Source

Module tested at ESRF to Eacc of 7 MV/m and transferred 360 kW to 170 mA beam.

Third Harmonic Passive Cavity-Systems Installed

3rd harmonic (1.5 GHz) SRF systems lengthen bunch, decrease charge density & increase beam lifetime. Landau damping suppresses coupled bunch instabilities.

After installation, both SLS and ELETTRA gained a factor of 3 on bunch lengthen and more than a factor of 2 on beam life-time.

Prototype 3rd harmonic Cavity
Built at CERN

SLS Cryomodules

ELETTRA Cryomodule

FREE ELECTRON LASERS

Energy Recovery Linacs (ERL)

Six Operating Light Sources

	E (MeV)	Wavelength (um)	
JAERI - Japan	16	20-30	ERL
ELBE Rossendarf-	12-40	2 - 10	FEL
Germany			
SCA- Stanford,	40-50	1 - 2	FEL, ERL
USA			
DALINAC	40-50	2.5 - 7	FEL
Darmstadt-Germany			
JLAB- Va, USA	45-80	1 - 6	FEL, ERL
TTF-I – DESY,	180-270	0.1 - 0.2	SASE-FEL
Germany			

1300 MHz TESLA Cavities

FEL Upgrade 8 cavity module Average Eacc > 15 MV/m 1500 MHz

August 03. String assembled and under vacuum in the clean room.

TTF-FELs

Gradient Progress for TESLA and TTF Success Has Stimulated Many World-Wide SC Accelerators

ACCELERATOR-BASED NEUTRON SOURCES

SNS: First High Intensity Superconducting Proton Linac, Switched to SC in 2000

Performance of SNS Structures, JLAB

> 30 cavities made by industry

Peak surface electric fields in medium beta elliptical structures are now in the range of 50 - 70 MV.m, comparable to TESLA structures.

 $\beta = 0.61, 805 \text{ MHz},$ Epk/Eacc = 3.5

> 30 cavities made by industry

 $\beta = 0.8, 805 \text{ MHz},$ Epk/Eacc = 2.5

Rare Isotope Accelerator (RIA) for Nuclear Astrophysics

High Priority for Nuclear Physics

Future Light Sources Under Study Most Based on TESLA Technology

• USA

- Cornell ERL 5- 7 GeV, ERLPrototype 100 MeV
- BNL, PERL, 2.7 GeV
- LBNL LUX, 600 MeV
- MIT 1 4 GeV

UK-Europe

- BESSY: 1.5 2.2 GeV
- Daresbury, 4 GLS, ERL, FEL, 600 MeV,
 - Prototype 30 MeV

Japan

- KEK, 4 - 6 GeV, ERL

Cornell

Prototype

PERL

A Complete ERL for R&D

Prototype

LUX Linac-Based UltraFast Xray Facility

1 - 4 GeV

Multi-Mission High Intensity Proton Linacs

Multi-Mission High Intensity Proton Linacs

Major SRF Capabilites and Facilities Exist World-Wide for Cavity and Cryomodule Design, Development, Production, Assembly, Testing

- USA
 - JLAB, Cornell, Fermilab, Argonne, MSU, LANL
- Europe
 - DESY, SACLAY, INFN, CERN
- Japan
 - KEK

JLAB
Cavity
Vertical
Test
Areas

Jlab - Cryomodule Assembly and Test Areas

Cryomodule Test Facility (CMTF)

Los Alamos Nat Lab - SRF Facilities

2. Assembly with flanges, couplers, valves, etc. in a 2600 ft² Clean room

1. Ultra-pure water is used for HPR and assembly.

140 ft.

4. Inserted in a 38" cryostat with radiation shield

ligh-pressure rinsed in a clean room.

Conclusions

- Steady growth world-wide of SC accelerators
- Substantial operating experience and a robust technology, pushing beyond design
- Continuous increase in performance has launched new projects
- Major facilities exist world-wide at more than 10 institutes to help launch the cold linear collider
- TESLA technology will be important to advance basic science:
 - particle physics, nuclear physics, materials science, life sciences